Synchrony-Induced Switching Behavior of Spike Pattern Attractors Created by Spike-Timing-Dependent Plasticity
نویسندگان
چکیده
Although context-dependent spike synchronization among populations of neurons has been experimentally observed, its functional role remains controversial. In this modeling study, we demonstrate that in a network of spiking neurons organized according to spike-timing-dependent plasticity, an increase in the degree of synchrony of a uniform input can cause transitions between memorized activity patterns in the order presented during learning. Furthermore, context-dependent transitions from a single pattern to multiple patterns can be induced under appropriate learning conditions. These findings suggest one possible functional role of neuronal synchrony in controlling the flow of information by altering the dynamics of the network.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملLearning in Silicon: Timing is Everything
We describe a neuromorphic chip that uses binary synapses with spike timing-dependent plasticity (STDP) to learn stimulated patterns of activity and to compensate for variability in excitability. Specifically, STDP preferentially potentiates (turns on) synapses that project from excitable neurons, which spike early, to lethargic neurons, which spike late. The additional excitatory synaptic curr...
متن کاملTiming Intervals Using Population Synchrony and Spike Timing Dependent Plasticity
We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increa...
متن کاملSpike-timing-dependent synaptic plasticity can form "zero lag links" for cortical oscillations
We study the impact of spike-timing-dependent synaptic plasticity (STDP) on coherent gamma activity between distant cortical regions with reciprocal projections. Our simulation network consists of two areas and includes a STDP model re4ecting e5cacy suppression between pre/ postsynaptic spike pairs as found in recent experiments during stimulation with spike trains (Nature 416 (2002) 433). We 8...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2007